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Introduction

I Statistical inference can be classified as estimation problem and
testing problem.

I The goal of estimation is to make a proper guess of unknown
parameter, e.g. population mean µ, population proportion p, etc,
using data.

I The goal of testing is to exam whether the estimated value for the
unknown parameter is good, or whether some statistical argument is
correct.

I In this chapter, we discuss the estimation and testing methods based
on single sample, forcusing on population proportion and population
mean.
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Inference on Population Proportion

The population proportion p emerges when the characteristic we
measure on each individual is categorical, or simply binary (i.e., only
2 outcomes possible). Here are some examples:

p = proportion of airline has experienced exceedance

p = proportion of defective water filters in a factory

p = proportion of HIV positive in SC

We can connect these binary outcomes to the Bernoulli trails
assumptions for each individual in the sample:

1. Each trial results in only two possible outcomes, labeled as
“success” and “failure.”

2. The trials are independent.

3. The probability of a success in each trial, denoted as p, remains
constant. It follows that the probability of a failure in each trial
is 1− p.
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Point Estimator of Proportion p

I Suppose we define Y = the number of successes out of n
sampled individuals so Y ∼ b(n, p). A natural point estimator
for p, the population proportion, is

p̂ =
Y

n
,

the sample proportion. p̂ is read as p hat.
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Property of p̂

I p̂ is a unbiased estimator of p. That is,

E (p̂) = p.

I To quantify the precision of p̂,

var(p̂) =
p(1− p)

n

I Question: What is the (asymptotic) distribution of p̂?
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Sampling Distribution of p̂ and CLT

I To derive the sampling distribution of p̂, we need first introduce
the central limit theorem.

I Central Limit Theorem: Suppose that Y1,Y2, . . . ,Yn is a
random sample from a population distribution with mean µ and
variance σ2. When the sample size n is large, we have

Y ∼ AN
(
µ,
σ2

n

)

I AN is read as Asymptotically Normal.

I Recall HW9 problem 4.
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Simulation Study of CLT Cont’d
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Sampling distribution of p̂

With the help of central limit theorem, we can derive an asymptotic
distribution of p̂. Recall that Y = the number of successes out of n
sampled individuals and Y ∼ b(n, p). We can express Y as the sum
of n independent Bernoulli trials with success probability p. That is

Y =
n∑

i=1

Xi ,

where X
i.i.d.∼ Bernoulli(p). E (Xi ) = p, and Var(Xi ) = p(1− p). It

follows that p̂ = Y /n =
∑n

i=1 Xi/n = X̄ . By CLT, we have

p̂ =
Y

n
= X ∼ AN

(
p,

p(1− p)

n

)
.
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Confidence Interval

I Using a point estimator only ignores important information;
namely, how variable the estimator is.

I To avoid this problem (i.e., to account for the uncertainty in the
sampling procedure), we therefore pursue the topic of interval
estimation (also known as confidence intervals).

I The main difference between a point estimate and an interval
estimate is that

I a point estimate is a one-shot guess at the value of the
parameter; this ignores the variability in the estimate.

I an interval estimate (i.e., confidence interval) is an interval of
values. It is formed by taking the point estimate and then
adjusting it downwards and upwards to account for the point
estimate’s variability.
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Confidence Interval for p

I Recall that p̂ ∼ AN
(
p, p(1−p)

n

)
.

I Let us define zα be the upper α percentage point of the
standard normal distribution, i.e., P(Z > zα) = α.

I An approximate 100(1− α)% confidence interval for p is(
p̂ − zα/2

√
p̂(1− p̂)

n
, p̂ + zα/2

√
p̂(1− p̂)

n

)
.
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Confidence Interval for p cont’d

I An approximate 100(1− α)% confidence interval for p is(
p̂ − zα/2

√
p̂(1− p̂)

n
, p̂ + zα/2

√
p̂(1− p̂)

n

)
.

I The quantity zα/2

√
p̂(1−p̂)

n is called the margin of error .

I Rule of thumb: To use normal approximation, we need np̂ ≥ 15
and n(1− p̂) ≥ 15.

I Note of the form of the interval:

point estimate ± Zα/2 × standard error
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Interpretation of Confidence Interval

I Suppose that we are interested in parameter p for certain
population. We take a sample of size n and calculate the sample
proportion p̂ = Y /n. A 95% confidence interval is given by

Point. Est± 1.96 Standard Error.

I The 95% confidence comes from the fact that if we repeated
this experiment over and over again, apprxomiately, 95% of all
samples would produce a confidence interval that contains the
true proportion, and only 5% of the time would the interval be
in error.

I We call 100(1− α)% the confidence level.
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Interpretation of Confidence Interval Cont’d

Here is a pictorial illustration of the confidence interval:

13 / 56



Statistical Hypothesis

I Definition: a statistical hypothesis is an assertion or conjecture
concerning one or more population parameters.

I Example:

1. The proportion of underweight milk is more then 3% in a local
farm.

2. More than 7% of the landings for a certain airline exceed the
runway.

3. The defective rate of the water filter is less than 5%.
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4 Steps to a Hypothesis Test

1. State the null (H0) and alternative (Ha or H1) hypotheses.

2. Collect the data and calculate test statistic assuming H0 is
true.

3. Assuming the H0 is true, calculate the p-value.

4. Draw conclusion based on the p-value. We either reject H0 or
fail to reject H0.

Let us look at an example to illustrate these steps...
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Example: Defective Water Filters

I Historically, the defective rate of water filters is 7% in a certain
factory. A new quality control system is introduced to reduce
the defective rate. Suppose that we randomly choose 300 water
filters, and calculate p̂ = 0.041. We want to test whether the
new system reduce the defective rate or not.

I Let p=proportion of defective water filters in the factory after
introducing the new system.
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Step 1: The Null and Alternative Hypothesis

I Null hypothesis is denoted by H0, which represents what we
assume to be true. Under null hypothesis, the exact value of the
parameter is specified.

I Alternative hypothesis is denoted by Ha or H1, which represents
the researcher’s interest.

I In most situation, researchers want to reject null hypothesis in
favor of the alternative hypothesis by performing some
experiment.

I In defective water filters example,

H0 : p = 0.07

Ha : p < 0.07 (the new system reduces the defective rate)
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Step 2: Calculate test statistic

I How should we make our decision based on the sample?

I We reject H0, if p̂ is far less than 0.07, which is not likely to
happen if assuming p = 0.07.

I We need the sampling distribution to quantify how far is far.
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Test Statistic for Proportion

I Recall that if H0 : p = p0 is true, then

p̂ ∼ AN

(
p0,

√
p0(1− p0)

n

)
.

I Therefore, the test statistic is (standardizing)

Z =
p̂ − p0√
p0(1−p0)

n

∼ AN (0, 1)

I In defective water filter example, assuming H0 is true, the test
statistic is calculated as

z0 =
p̂ − p0√
p0(1−p0)

n

=
0.041− 0.07√

0.07(1−0.07)
300

= −1.97.

I Question: is this number likely to appear if assume p0 = 0.07 is
true? 19 / 56



Step 3: Calculate p-value

I The p-value is the probability of getting the sample results you
got or something more extreme assuming that the null
hypothesis is true.

I If the p-value is small, we doubt the null hypothesis since it is
not likely to observe such a ”extreme” test statistic under H0.
There is evidence to against null hypothesis.

I On the other hand, if the p-value is large, we have a pretty good
chance to observe the computed test statistic under H0 in a
single experiment, there is no reason to question the H0.

I In other words, the p-value for a hypothesis test measures how
much evidence we have against H0, that is,

the smaller the p-value =⇒ the more evidence against H0
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Step 3: Calculate p-value cont’d

I In defective water filter example, the p-value of the test is:

P(Z < −1.97) = 0.024 (found in table)

I Why “ < ”?

Alternative hypothesis Hypothesis type p-value formula
Ha : p < p0 Left-tail hypothesis P(Z < z0)
Ha : p > p0 Right-tail hypothesis P(Z > z0)
Ha : p 6= p0 Two-tail hypothesis 2P(Z < −|z0|)

I In our example, the p-value is 0.024, do you think it is large?
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Step 4: Conclusion

I If the p-value is small, we reject the null hypothesis and
conclude the alternative hypothesis.

I If the p-value is not small, we do not reject the null
hypothesis and do not conclude the alternative hypothesis.

I There is one remaining question, how small should p-value be to
be considered as ”small”? We need level of significance to
answer it.
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Step 4: Conclusion cont’d

I We use α to denote the level of significance.

I Level of significance is determined before you see the data.

I In practice, we usually set α = 0.05. Other common choices are
α = 0.01, or α = 0.1.

I We simply compare the p-value with the α level, we reject H0 if
the p-value is less than α; and do not reject H0 is the p-value is
greater than or equal to α

I In defective water filter example, p-value= 0.024 < 0.05
(pre-defined), therefore, we reject H0, and conclude that we
have sufficient evidence to conclude the new system reduces the
defective rate (note: we conclude Ha in the context of the
question.)
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Example: Exceedance of the Localizer

A certain type of flu outbreaks in northern part of the USA. The
historical records shows that there are 7% of the residences in
Columbia carrying flu under usual condition. Researchers want to see
whether there is an outbreak in Columbia, there are 30 out of 250
randomly chosen people in the sample carrying flu. Can we conclude
that there is an outbreak in Columbia? Answer the following
question using confidence interval approach (95%) and hypothesis
testing approach (assuming level of significance is 0.05).
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Inference for p: Confidence Interval Approach

Recall that a 100(1− α)% C.I. is(
p̂ − zα/2

√
p̂(1− p̂)

n
, p̂ + zα/2

√
p̂(1− p̂)

n

)
.

I The point estimate p̂ = 30/250 = 0.12.

I zα/2 = z0.025 = 1.96

I Standard error:
√

0.12(1− 0.12)/250 = 0.021

I 95% CI is: (0.079,0.161)

I Conclusion?
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Inference for p: Hypothesis Test

I Step 1: State H0 and H1

H0 : p = 0.07
Ha : p > 0.07

I Step 2: Calculate test statistic assuming H0 is true

Z =
p̂ − p0√
p0(1−p0)

n

=
0.12− 0.07√

0.07(1−0.07)
250

= 3.10.

I Step 3: Calculate p-value
p-value=P(Z > 3.10) ≈ 0.001.

I Step 4: Dawn the conclusion
α = 0.05, p-value is smaller than 0.05. We reject H0, and
conclude that there is an outbreak in Columbia.
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Method of Evaluating a Test: Type I and Type II Errors

There are two mistakes we can make in a hypothesis test.

I Type I error: H0 is rejected but in reality H0 is true

I Type II error: H0 is not rejected but in reality H0 is false
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Controlling Risk

I The probability of type I error is denoted by α (same as the
level of significance), i.e.,

α = Prob (reject H0|H0 is true).

I The type II error is denoted by β, i.e.,

β = Prob (fail to reject H0|Ha is true at some value).

I The idea situation is both type I and type II error is 0, which
means we can always make correct decision. However, only
oracle knows the true. For us, every decision we make will have
associated error probability.
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Controlling Risk Cont’d

I In practice, if we try to decrease the type I error, the type II error
will increase, and vice versa. Remember, there is no free lunch!

I Researchers should consider the consequences of type I error
and type II errors to help determine significance level.

I Example: An environmentalist takes samples at a nearby river to
study the average concentration level of a contaminant. He
wants to find out, using a 0.1 level of significance, if the average
concentration level exceeds the acceptable level for safely
consuming fish from the river.
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Controlling Risk Cont’d

I Describe a Type I error for this problem and the potential
consequence.

I Describe a Type II error for this problem and the potential
consequence.
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Inference of Population Mean

I For binary random variable, we have discussed how to estimate the
population proportion using point estimate and confidence interval.

I Moreover, we built a 4-step procedure to test the hypothesis
corresponding to the population proportion.

I Now, it’s time to move on to the case when the random variable is
numerical and learn some method to guess population mean µ in the
proper way.
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Sampling distribution of Y

I Recall sample mean Y is a reasonable point estimator of the
population mean µ.

I RESULT: Suppose Y1,Y2, . . . ,Yn is a random sample from a
N (µ, σ2) distribution. Then the sample mean Y has the
following sampling distribution:

Y ∼ N (µ,
σ2

n
)

I The above result reminds us
I Y is an unbiased estimator of µ.
I se(Y ) = σ/

√
n
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Example

I Let Y =time (in seconds) to react to brake lights during
in-traffic driving.

I We assume Y ∼ N (µ = 1.5, σ2 = 0.16). We call this the
population distribution.

I Suppose that we take a random sample of n = 5 drivers with
times Y1, . . . ,Y5. What is the distribution of the sample mean
Y ?
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t distribution

I If we standardize Y , we obtain

Z =
Y − µ
σ/
√
n
∼ N (0, 1)

I However, population standard deviation σ is usually unknown.
Replacing it with the sample standard deviation S , we get a
new sampling distribution:

t =
Y − µ
S/
√
n
∼ t(n − 1),

a t distribution with degrees of freedom ν = n − 1.
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t distribution

The t distribution has the following characteristics:

I It is continuous and symmetric about 0.

I It is indexed by a value ν called the degrees of freedom.

I As ν −→∞, t(ν) −→ N (0, 1).

I When compared to the standard normal distribution, the t
distribution, in general, is less peaked and has more probability
(area) in the tails.
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Example

Hollow pipes are to be used in an electrical wiring project. The
manufacturer claims that the outside diameter of this pipe is 1.29
inch. The data below were collected by a design engineer. The data
are measurements of Y , the outside diameter of this type of pipe
(measured in inches). These n = 25 pipes were randomly selected
and measured-all in the same location.

1.296 1.320 1.311 1.298 1.315
1.305 1.278 1.294 1.311 1.290
1.284 1.287 1.289 1.292 1.301
1.298 1.287 1.302 1.304 1.301
1.313 1.315 1.306 1.289 1.291

Under this assumption (which may or may not be true), calculate
the value of

t =
Y − µ
s/
√
n
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Example cont’d

We use R to find the sample mean y and the sample standard
deviation s:

> mean(pipes) ## sample mean

[1] 1.29908

> sd(pipes) ## sample standard deviation

[1] 0.01108272

With n = 25, we have

t =
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Example cont’d

If the manufacturer’s claim is true (that is, if µ = 1.29 inches), then

t =
y − µ
s/
√
n

comes from a t(24) distribution. The t(24) pdf is displayed below:
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Example cont’d

Key question: Does t = 4.096 seem like a value you would expect
to see from this distribution? If not, what might this suggest? Recall
that t was computed under the assumption that µ = 1.29 inches
(the manufacturer’s claim).

QUESTION: The value t = 4.096 is what percentile of the t(24)
distribution?

> pt(4.096,24)

[1] 0.9997934
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Normal quantile-quantile (qq) plots

I Recall if Y1, . . . ,Yn is a random sample from a N (µ, σ2)
distribution, then

t =
Y − µ
s/
√
n
∼ t(n − 1)

I An obvious question arises: “What if Y1, . . . ,Yn are
non-normal?”

I Answer: The t distribution result still approximately holds. That
is, the t distribution is robust to the normality assumption.

I How to assess the normal distribution assumption? Normal
quantile-quantile (qq) plot

40 / 56



Normal quantile-quantile (qq) plots cont’d

I The plot is constructed as follows:

I On the vertical axis, we plot the observed data, ordered from
low to high.

I On the horizontal axis, we plot the (ordered) theoretical
quantiles from the distribution assumed for the observed data
(here, normal).

I For the pipe diameter data, below is the qq plot.
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> qqnorm(pipes,pch=16,main="")

> qqline(pipes)
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Normal quantile-quantile (qq) plots cont’d

I The ordered data do not match up perfectly with the normal
quantiles, but the plot doesn’t set off any serious alarms.

I Fat pencil test: Imagine a “fat pencil” lying along the line. If all
the points are covered by this imaginary pencil, a normal
distribution adequately describes the data.

I If there is no gross departure from the straight line on the plot,
we should accept that the model describes the data well.
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CI for µ. Assume normality and KNOWN σ2

I Recall if Y1, . . . ,Yn is a random sample from a N (µ, σ2)
distribution and σ2 is known, then

Z =
Y − µ
σ/
√
n
∼ N (0, 1)

I Similar to CI derivation in population proportion, a 100(1−α)%
CI for µ is given by(

y − zα/2
σ√
n
, y + zα/2

σ√
n

)
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Example: pipe diameter data

Go back to pipe diameter data. Based on past experience, the
engineers assume a normal population distribution (for the pipe
diameters) with known population standard deviation 0.02. We want
to find a 95% CI for µ, the mean pipe diameter.
Solution: We have the sample mean Y = 1.30. So a 95% C.I.
interval is (

y − zα/2
σ√
n
, y + zα/2

σ√
n

)
= (1.30− 1.96× 0.02√

25
, 1.30 + 1.96× 0.02√

25
)

= (1.292, 1.308)

Practical Interpretation: Based on the sample data, with 95%
confidence, the outside diameters for the hollow pipe is between 1.29
and 1.31 inches.
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CI for µ. Assume normality and UNKNOWN σ2

I Recall if Y1, . . . ,Yn is a random sample from a N (µ, σ2)
distribution and σ2 is unknown, then

t =
Y − µ
S/
√
n
∼ t(n − 1)

I A 100(1− α)% CI for µ is given by(
y − tn−1,α/2

S√
n
, y + tn−1,α/2

S√
n

)
where S is the sample standard deviation.

45 / 56



Example: pipe diameter data

Go back to pipe diameter data. Assume the pipe diameters are
normality distributed with unknown population variance. We want to
find a 95% CI for µ, the mean pipe diameter.
Solution: We have the sample mean Y = 1.30 and sample standard
deviation S = 0.011 So a 95% C.I. interval is(

y − tn−1,α/2
S√
n
, y + tn−1,α/2

S√
n

)
= (1.30− 2.064× 0.011√

25
, 1.30 + 2.064× 0.011√

25
)

= (1.295, 1.305)

Practical Interpretation: Based on the sample data, with 95%
confidence, the outside diameters for the hollow pipe is between
1.295 and 1.305 inches.
Note: 2.064 can be found in t table, or it can be calculated in
R by qt(0.975, 24).
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Sample size determination

I In a planning stages of an experiment or investigation, it is often
of interest to determine how many individuals are needed to
write a confidence interval with a given level of precision.

I For example, we might want to construct a 95 percent
confidence interval for a population mean, so that the interval
length is no more than 5 units (e.g., days, inches, dollars, etc.).

I Sample size determination is also associated with the
practical issues like cost, time spent in data collection, personnel
training, etc.
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Sample size determination cont’d

I Suppose that Y1,Y2, . . . ,Yn is a random sample from a
N (µ, σ2) population with σ2 known. Recall that a 100(1− α)%
CI for µ is given by

Y ± zα/2
σ√
n︸ ︷︷ ︸

=B, say

I B is called the margin of error.
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Sample size determination cont’d

I It is possible to determine the sample size n once we specify
these three pieces of information:

I the value of σ2 (or an educated guess at its value; e.g., from
past information, etc.)

I the confidence level, 100(1− α)

I the margin of error, B.

I This is true because

B = zα/2

(
σ√
n

)
⇐⇒ n =

(σzα/2
B

)2
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Sample size determination example

In a biomedical experiment, we would like to estimate the population
mean remaining life of healthy rats that are given a certain dose of a
toxic substance. Suppose that we would like to write a 95 percent
confidence interval with a margin of error equal to B = 2 days. From
past studies, remaining rat lifetimes have been approximated by a
normal distribution with standard deviation s = 8 days. How many
rats should we use for the experiment?

Solution: With zα/2 = z0.025 ≈ 1.96, B = 2 and σ = 8, the desired
sample size to estimate µ is

n =
(σzα/2

B

)2
=

(
8× 1.96

2

)2

≈ 61.46

We would sample n = 62 rats to achieve these goals.
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Hypothesis Test on population mean

1. State the null (H0) and alternative (Ha) hypotheses.
I Null hypothesis H0 : µ = µ0

I Alternative hypothesis
I Right-tail Ha : µ > µ0
I Left-tail Ha : µ < µ0
I Two-tail Ha : µ 6= µ0

2. Collect the data and calculate test statistic assuming H0 is true.

σ known: z0 =
Y − µ0

σ/
√
n

OR σ unknown: t0 =
Y − µ0

s/
√
n

3. Assuming the null hypothesis is true, calculate the p-value.

Alternative Type p-value (based on the knowledge of σ)
Ha : µ > µ0 Right-tail P(Z > z0) or P(t > t0)
Ha : µ < µ0 Left-tail P(Z < z0) or P(t < t0)
Ha : µ 6= µ0 Two-tail 2P(Z < −|z0|) or 2P(t < −|t0|)

4. Draw conclusion based on the p-value. We either reject H0 or
fail to reject H0.
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Hypothesis test example: known σ2

Go back to pipe diameter data. Based on past experience, the
engineers assume a normal population distribution (for the pipe
diameters) with known population standard deviation 0.02.
Researchers what to find out whether the pipe diameter is 1.31.
Assume a significance level 0.05.
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Hypothesis test example: known σ2

Solution:

I Step 1: State hypothesis
H0 : µ = 1.31

Ha : µ 6= 1.31

I Step 2: Test statistic

z0 =
1.30− 1.31

0.02/
√

25
= −2.5

I Step 3: p-value

p − value = 2P(Z < −| − 2.5|) = 2P(Z < −2.5) = 0.012

I Step 3: Conclusion
p-value=0.012< α, we reject H0. We have enough evidence to
conclude the mean pipe diameter is not 1.31 inches.
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Hypothesis test example: unknown σ2

Go back to pipe diameter data. Assume the pipe diameters are
normality distributed with unknown population variance. Researchers
what to find out whether the pipe diameter is less than 1.308.
Assume a significance level 0.05.
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Hypothesis test example: unknown σ2

Solution:

I Step 1: State hypothesis

I Step 2: Test statistic

I Step 3: p-value

I Step 3: Conclusion
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R code to produce t-test

> t.test(pipes,alternative="less", mu=1.308)

One Sample t-test

data: pipes

t = -4.0243, df = 24, p-value = 0.0002478

alternative hypothesis: true mean is less than 1.308

95 percent confidence interval:

-Inf 1.302872

sample estimates:

mean of x

1.29908

56 / 56


